Matemática elementar/Conjuntos/Números racionais
Números racionais e frações
Fração é um número que exprime uma ou mais partes iguais que divida uma unidade ou um inteiro.
Assim, por exemplo, se tivermos uma pizza inteira e a dividirmos em quatro partes iguais, cada parte representará uma fração da pizza.
Na matemática, um número racional (ou, vulgarmente, fração) é uma razão entre dois inteiros, geralmente escrita na forma Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a/b\,\!,} onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle b \,\!} é um número inteiro diferente de Zero.
Exemplos:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{29}{8}:}
A adição e multiplicação de racionais é dada da seguinte forma:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{matrix}{a \over b} & + & {c \over d} & = & {ad+bc \over bd} \\ {a \over b} & \cdot & {c \over d} & = & {ac \over bd} \end{matrix}}
Exemplo:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} + =
Dois números racionais a/b e c/d são iguais apenas se ad = bc.
O conjunto de todos os números racionais é Q, ou:
Cada número racional pode ser escrito de diversas formas, como, por exemplo, 3/6 = 2/4 = 1/2. A forma mais simples é quando a e b não possuem divisores em comum, e todo racional tem uma forma como esta. A expansão decimal de um racional é finita ou periódica, propriedade que caracteriza os números racionais.
Definições
De modo simples, pode-se dizer que uma fração de um número, representada de modo genérico como designa este número dividido em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle {b} \,\!} partes iguais. Neste caso, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a} \,\!} corresponde ao numerador, enquanto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle {b} \,\!} corresponde ao denominador.
Por exemplo, a fração Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{56}{8}} designa o quociente de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 56 \,\!} por Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8 \,\!.} Ela é igual a Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7 \,\!,} pois Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7 \,\!} x Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8 \,\!} = Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 56 \,\!.}
Nota: A divisão é a operação inversa da multiplicação.
Os números expressos em frações são chamados de números racionais. O conjunto dos racionais é representado por Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb Q.}
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb Q} = {Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \,\!} / Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \,\!} = Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{a}{b},} com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \in \mathbb{Z}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle b \in \mathbb{Z}} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ne 0} }
Decimais
Decimais exatos
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} = Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0,5 \,\!}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{5}} = Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0,2 \,\!}
Decimais periódicos
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{3}} = Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1,66... \,\!} (a)
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7}{6}} = (b)
Os decimais periódicos são denominados dízimas periódicas. As dízimas periódicas podem ser simples como no exemplo (a) ou compostas como no exemplo (b). A fração que originou a dízima periódica é denominada de fração geratriz e a parte que repete na dízima é denominada período.
Geratriz de dízima periódica
Dízima simples
A fração geratriz é obtida usando-se como numerador o período e como denominador um número formado por tantos noves quantos forem os algarismos do período.
Dízima composta
A fração geratriz terá como numerador a parte não-periódica, seguida do período menos a parte não-periódica, e denominador um número formado de tantos noves quanto são os algarismos do período, seguido de tantos zeros quantos são os algarismos da parte não-periódica (ante-período).
=> + = + = =
Conversão entre dízima e fração
Seja o número x = 2,333... (dízima). O período da dízima é o número 3 (um só dígito), assim, para colocar o período da dízima antes da vírgula, fazemos 10*x = 23,333.... Agora, podemos eliminar a dízima fazendo a subtração: 10*x - x = 23,333... - 2,333..., ou seja, 9*x = 21 x =
Outro exemplo mais complexo desta conversão, que ocorre quando a dízima se apresente mais à frente da vírgula: x = 38,07821821821... (dízima). Após a virgula, temos os números "07"´(dois dígitos) que não fazem parte do período e o período "821" (três dígitos).
Primeiro isolamos o período logo após a vírgula:
100*x = 3807,821821821...
Agora repetimos o processo do exemplo anterior:
100.000*x = 3807821,821821821...
Fazemos então a subtração
100.000*x - 100*x = 3807821,821821821... - 3807,821821821..., assim, temos que
99900*x = 3804014 , portanto
x = , que poderá ainda ser simplificada.
Como decorrência da repetição deste processo de conversão, podemos chegar à seguinte regra prática de conversão de dízimas em frações. Vamos aplicá-la ao número 38,07821821821...
Eis os passos:
1. O período da dízima tem 3 dígitos, que é o número de algarismos nove (999 portanto);
2. Após a vírgula temos 2 dígitos que não fazem parte da dízima, que é o número de zeros (00 portanto);
3. Temos assim o denominador da fração que será 99900;
4. O númerador da fração será a diferença do número formado pelos algarismos até o primeiro período da dízima, no caso 3807821, pelo número formado pelos algarismos que antecedem o início da dízima, no caso 3807. Temos então 3807821 - 3807.
5. A fração será, portanto, .
Tipos de frações
- própria: o numerador é menor que o denominador. Ex.:
- imprópria: o numerador é maior que o denominador. Ex.:
- mista: constituída por uma parte inteira e uma fracionária. Ex.:
- aparente: o numerador é múltiplo do denominador. Ex.:
- equivalentes: aquelas que mantêm a mesma proporção de outra fração. Ex.:
- irredutível: o numerador e o denominador são primos entre si, não permitindo simplificação. Ex.:
- unitária: o numerador é igual a 1 e o denominador é um inteiro positivo. Ex.:
- egípcia: fração que é a soma de frações unitárias, distintas entre si. Ex:
- decimal: o denominador é uma potência de 10. Ex.:
- composta: fração cujo numerador e denominador são frações:
- contínua: fração constituída a partir de uma sequência de inteiros naturais da seguinte maneira Quando esta fração contínua termina, o seu resultado é um número racional, porém quando esta fração não termina, o resultado pode ser racional ou irracional.
Operações
Multiplicação
Multiplicam-se os numeradores entre si e os denominadores entre si. Ex.:
Para multiplicar uma fração por um número inteiro, considera-se que este é uma fração cujo denominador é igual a 1. Ex.:
É importante notar que, muitas vezes, a multiplicação dos numeradores e denominadores resulta em frações redutíveis. Esta fração deve ser reduzida a uma fração irredutível:
Costuma ser mais prático simplificar antes de efetuar a multiplicação:
Divisão
Como visto, a divisão é a operação inversa da multiplicação. É importante ter isso em mente para resolver uma divisão entre frações:
- ÷
Primeiramente inverte-se o divisor da segunda fração. Com isto, tem-se a inversão da operação, isto é, passará a haver uma multiplicação:
Que se resolve como mostrado acima.
Adição
Caso os denominadores não sejam iguais é preciso, antes de efetuar a adição, encontrar o menor múltiplo comum (MMC) entre os denominadores:
Encontrado o MMC, este será dividido por cada um dos denominadores, multiplicando-se o resultado desta divisão pelo respectivo numerador. Como o MMC de 3 e 5 é 15, tem-se que:
- ∴ ∴
Sendo iguais os denominadores, pode-se efetuar a adição entre os numeradores:
O denominador comum é mantido:
Subtração
A subtração é feita seguindo-se os mesmos passos da adição.
Exponenciação
É indiferente resolver primeiro a exponenciação ou a divisão:
Efetuando-se primeiramente a divisão obtém-se o mesmo resultado:
Radiciação
A radiciação de uma fração é feita seguindo-se os mesmos passos da potenciação.
Expoente fracionário
Da mesma forma que na divisão entre frações, a ocorrência de expoente fracionário causa a inversão da operação:
Simplificação de frações
Uma fração pode ser simplificada quando numerador e denominador não são primos entre si. Ex.:
Para tanto basta dividi-los pelo máximo divisor comum (MDC) entre eles, obtendo-se uma fração que, além de manter a proporção da original, é do tipo irredutível:
Comparação entre frações
Para estabelecer comparação entre frações, é preciso que elas tenham o mesmo denominador. Isso é obtido através do menor múltiplo comum, como foi visto na adição.
- ?
O MMC entre 5 e 7 é 35.
- ∴ ∴
Uma vez igualados os denomidores,pode-se fazer a comparação entre as frações:
- < ∴ <
A comparação entre frações com denominadores diversos vale-se do fato de que há frações que são equivalentes entre si, pois:
- e
Conversão entre frações impróprias e mistas
Uma fração do tipo imprópria pode ser convertida para mista e vice-versa.
Para tanto, basta dividir o numerador pelo denominador. O quociente será o numerador da fração mista e o resto será o numerador. Como o quociente da divisão 7 ÷ 3 é igual a 2 e o resto é 1, tem-se que a fração acima, escrita como fração mista, terá a seguinte notação:
Para fazer o caminho inverso, basta multiplicar o denominador pela parte inteira e somar o resultado ao numerador, mantendo-se o denominador. Como o produto 3 × 2 é igual a 6 e a soma 6 + 1 é igual a 7, obtém-se novamente a notação sob a forma de fração imprópria, como visto acima.
Ver também
Wikilivros
- Matemática elementar/Conjuntos/Números racionais/Exercícios
- Análise real/Números racionais - texto mais avançado