Matemática elementar/Conjuntos/Números racionais: mudanças entre as edições
imported>Guiwp m (Foram revertidas as edições de 179.216.12.30 (disc) para a última versão por Defender) |
|||
Linha 167: | Linha 167: | ||
=== Subtração === | === Subtração === | ||
A subtração é feita seguindo-se os mesmos passos da adição. | A subtração é feita seguindo-se os mesmos passos da adição. | ||
8-2 | |||
4-1 2 | |||
2 | |||
2-1 | |||
1-1 | |||
=== Exponenciação === | === Exponenciação === |
Edição das 22h51min de 18 de fevereiro de 2014
Números racionais e frações
Fração é um número que exprime uma ou mais partes iguais que foi divida uma unidade ou um inteiro.
Assim, por exemplo, se tivermos uma pizza inteira e a dividirmos em quatro partes iguais, cada parte representará uma fração da pizza.
Na matemática, um número racional (ou, vulgarmente, fração) é uma razão entre dois inteiros, geralmente escrita na forma onde é um número inteiro diferente de Zero.
Exemplos:
A adição e multiplicação de racionais é dada da seguinte forma:
Exemplo:
- + =
Dois números racionais a/b e c/d são iguais apenas se ad = bc.
O conjunto de todos os números racionais é Q, ou:
Cada número racional pode ser escrito de diversas formas, como, por exemplo, 3/6 = 2/4 = 1/2. A forma mais simples é quando a e b não possuem divisores em comum, e todo racional tem uma forma como esta. A expansão decimal de um racional é finita ou periódica, propriedade que caracteriza os números racionais.
Definições
De modo simples, pode-se dizer que uma fração de um número, representada de modo genérico como designa este número dividido em partes iguais. Neste caso, corresponde ao numerador, enquanto corresponde ao denominador.
Por exemplo, a fração designa o quociente de por Ela é igual a pois x =
Nota: A divisão é a operação inversa da multiplicação.
Os números expressos em frações são chamados de números racionais. O conjunto dos racionais é representado por
- = { / = com e }
Decimais
Decimais exatos
=
=
Decimais periódicos
= (a)
= (b)
Os decimais periódicos são denominados dízimas periódicas. As dízimas periódicas podem ser simples como no exemplo (a) ou compostas como no exemplo (b). A fração que originou a dízima periódica é denominada de fração geratriz e a parte que repete na dízima é denominada período.
Geratriz de dízima periódica
Dízima simples
A fração geratriz é obtida usando-se como numerador o período e como denominador um número formado por tantos noves quantos forem os algarismos do período.
Dízima composta
A fração geratriz terá como numerador a parte não-periódica, seguida do período menos a parte não-periódica, e denominador um número formado de tantos noves quanto são os algarismos do período, seguido de tantos zeros quantos são os algarismos da parte não-periódica (ante-período).
=> + = + = =
Conversão entre dízima e fração
Seja o número x = 2,333... (dízima). O período da dízima é o número 3 (um só dígito), assim, para colocar o período da dízima antes da vírgula, fazemos 10*x = 23,333.... Agora, podemos eliminar a dízima fazendo a subtração: 10*x - x = 23,333... - 2,333..., ou seja, 9*x = 21 x =
Outro exemplo mais complexo desta conversão, que ocorre quando a dízima se apresente mais à frente da vírgula: x = 38,07821821821... (dízima). Após a virgula, temos os números "07"´(dois dígitos) que não fazem parte do período e o período "821" (três dígitos).
Primeiro isolamos o período logo após a vírgula:
100*x = 3807,821821821...
Agora repetimos o processo do exemplo anterior:
100.000*x = 3807821,821821821...
Fazemos então a subtração
100.000*x - 100*x = 3807821,821821821... - 3807,821821821..., assim, temos que
99900*x = 3804014 , portanto
x = , que poderá ainda ser simplificada.
Como decorrência da repetição deste processo de conversão, podemos chegar à seguinte regra prática de conversão de dízimas em frações. Vamos aplicá-la ao número 38,07821821821...
Eis os passos:
1. O período da dízima tem 3 dígitos, que é o número de algarismos nove (999 portanto);
2. Após a vírgula temos 2 dígitos que não fazem parte da dízima, que é o número de zeros (00 portanto);
3. Temos assim o denominador da fração que será 99900;
4. O númerador da fração será a diferença do número formado pelos algarismos até o primeiro período da dízima, no caso 3807821, pelo número formado pelos algarismos que antecedem o início da dízima, no caso 3807. Temos então 3807821 - 3807.
5. A fração será, portanto, .
Tipos de frações
- própria: o numerador é menor que o denominador. Ex.:
- imprópria: o numerador é maior que o denominador. Ex.:
- mista: constituída por uma parte inteira e uma fracionária. Ex.:
- aparente: o numerador é múltiplo do denominador. Ex.:
- equivalentes: aquelas que mantêm a mesma proporção de outra fração. Ex.:
- irredutível: o numerador e o denominador são primos entre si, não permitindo simplificação. Ex.:
- unitária: o numerador é igual a 1 e o denominador é um inteiro positivo. Ex.:
- egípcia: fração que é a soma de frações unitárias, distintas entre si. Ex:
- decimal: o denominador é uma potência de 10. Ex.:
- composta: fração cujo numerador e denominador são frações:
- contínua: fração constituída a partir de uma sequência de inteiros naturais da seguinte maneira Quando esta fração contínua termina, o seu resultado é um número racional, porém quando esta fração não termina, o resultado pode ser racional ou irracional.
Operações
Multiplicação
Multiplicam-se os numeradores entre si e os denominadores entre si. Ex.:
Para multiplicar uma fração por um número inteiro, considera-se que este é uma fração cujo denominador é igual a 1. Ex.:
É importante notar que, muitas vezes, a multiplicação dos numeradores e denominadores resulta em frações redutíveis. Esta fração deve ser reduzida a uma fração irredutível:
Costuma ser mais prático simplificar antes de efetuar a multiplicação:
Divisão
Como visto, a divisão é a operação inversa da multiplicação. É importante ter isso em mente para resolver uma divisão entre frações:
- ÷
Primeiramente inverte-se o divisor da segunda fração. Com isto, tem-se a inversão da operação, isto é, passará a haver uma multiplicação:
Que se resolve como mostrado acima.
Adição
Caso os denominadores não sejam iguais é preciso, antes de efetuar a adição, encontrar o menor múltiplo comum (MMC) entre os denominadores:
Encontrado o MMC, este será dividido por cada um dos denominadores, multiplicando-se o resultado desta divisão pelo respectivo numerador. Como o MMC de 3 e 5 é 15, tem-se que:
- ∴ ∴
Sendo iguais os denominadores, pode-se efetuar a adição entre os numeradores:
O denominador comum é mantido:
Subtração
A subtração é feita seguindo-se os mesmos passos da adição. 8-2 4-1 2 2 2-1 1-1
Exponenciação
É indiferente resolver primeiro a exponenciação ou a divisão:
Efetuando-se primeiramente a divisão obtém-se o mesmo resultado:
Radiciação
A radiciação de uma fração é feita seguindo-se os mesmos passos da potenciação.
Expoente fracionário
Da mesma forma que na divisão entre frações, a ocorrência de expoente fracionário causa a inversão da operação:
Simplificação de frações
Uma fração pode ser simplificada quando numerador e denominador não são primos entre si. Ex.:
Para tanto basta dividi-los pelo máximo divisor comum (MDC) entre eles, obtendo-se uma fração que, além de manter a proporção da original, é do tipo irredutível:
Comparação entre frações
Para estabelecer comparação entre frações, é preciso que elas tenham o mesmo denominador. Isso é obtido através do menor múltiplo comum, como foi visto na adição.
- ?
O MMC entre 5 e 7 é 35.
- ∴ ∴
Uma vez igualados os denomidores,pode-se fazer a comparação entre as frações:
- < ∴ <
A comparação entre frações com denominadores diversos vale-se do fato de que há frações que são equivalentes entre si, pois:
- e
Conversão entre frações impróprias e mistas
Uma fração do tipo imprópria pode ser convertida para mista e vice-versa.
Para tanto, basta dividir o numerador pelo denominador. O quociente será o numerador da fração mista e o resto será o numerador. Como o quociente da divisão 7 ÷ 3 é igual a 2 e o resto é 1, tem-se que a fração acima, escrita como fração mista, terá a seguinte notação:
Para fazer o caminho inverso, basta multiplicar o denominador pela parte inteira e somar o resultado ao numerador, mantendo-se o denominador. Como o produto 3 × 2 é igual a 6 e a soma 6 + 1 é igual a 7, obtém-se novamente a notação sob a forma de fração imprópria, como visto acima.
Ver também
Wikilivros
- Matemática elementar/Conjuntos/Números racionais/Exercícios
- Análise real/Números racionais - texto mais avançado